Neuroimaging paradigms for tonotopic mapping (I): The influence of sound stimulus type
نویسندگان
چکیده
Although a consensus is emerging in the literature regarding the tonotopic organisation of auditory cortex in humans, previous studies employed a vast array of different neuroimaging protocols. In the present functional magnetic resonance imaging (fMRI) study, we made a systematic comparison between stimulus protocols involving jittered tone sequences with either a narrowband, broadband, or sweep character in order to evaluate their suitability for the purpose of tonotopic mapping. Data-driven analysis techniques were used to identify cortical maps related to sound-evoked activation and tonotopic frequency tuning. Principal component analysis (PCA) was used to extract the dominant response patterns in each of the three protocols separately, and generalised canonical correlation analysis (CCA) to assess the commonalities between protocols. Generally speaking, all three types of stimuli evoked similarly distributed response patterns and resulted in qualitatively similar tonotopic maps. However, quantitatively, we found that broadband stimuli are most efficient at evoking responses in auditory cortex, whereas narrowband and sweep stimuli offer the best sensitivity to differences in frequency tuning. Based on these results, we make several recommendations regarding optimal stimulus protocols, and conclude that an experimental design based on narrowband stimuli provides the best sensitivity to frequency-dependent responses to determine tonotopic maps. We forward that the resulting protocol is suitable to act as a localiser of tonotopic cortical fields in individuals, or to make quantitative comparisons between maps in dedicated tonotopic mapping studies.
منابع مشابه
Neuroimaging paradigms for tonotopic mapping (II): The influence of acquisition protocol
Numerous studies on the tonotopic organisation of auditory cortex in humans have employed a wide range of neuroimaging protocols to assess cortical frequency tuning. In the present functional magnetic resonance imaging (fMRI) study, we made a systematic comparison between acquisition protocols with variable levels of interference from acoustic scanner noise. Using sweep stimuli to evoke travell...
متن کاملTonotopic mapping of human auditory cortex.
Since the early days of functional magnetic resonance imaging (fMRI), retinotopic mapping emerged as a powerful and widely-accepted tool, allowing the identification of individual visual cortical fields and furthering the study of visual processing. In contrast, tonotopic mapping in auditory cortex proved more challenging primarily because of the smaller size of auditory cortical fields. The sp...
متن کاملNeural activity underlying tinnitus generation: results from PET and fMRI.
Tinnitus is the percept of sound that is not related to an acoustic source outside the body. For many forms of tinnitus, mechanisms in the central nervous system are believed to play an important role in the pathology. Specifically, three mechanisms have been proposed to underlie tinnitus: (1) changes in the level of spontaneous neural activity in the central auditory system, (2) changes in the...
متن کاملHigh fidelity tonotopic mapping using swept source functional magnetic resonance imaging
Tonotopy, the topographic encoding of sound frequency, is the fundamental property of the auditory system. Invasive techniques lack the spatial coverage or frequency resolution to rigorously investigate tonotopy. Conventional auditory fMRI is corrupted by significant image distortion, sporadic acoustic noise and inadequate frequency resolution. We developed an efficient and high fidelity audito...
متن کاملOptical imaging of intrinsic signals in ferret auditory cortex: responses to narrowband sound stimuli.
This paper describes optical imaging of the auditory cortex in the anesthetized ferret, particularly addressing optimization of narrowband stimuli. The types of sound stimuli used were tone-pip trains and sinusoidal frequency and amplitude modulated (SFM and SAM) tones. By employing short illumination wavelengths (546 nm), we have successfully characterized the tonotopic arrangement, in agreeme...
متن کامل